Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p
نویسندگان
چکیده
Mycobacterium tuberculosis (Mtb) is a successful intracellular pathogen that thrives in macrophages (Mφs). There is a need to better understand how Mtb alters cellular processes like phagolysosome biogenesis, a classical determinant of its pathogenesis. A central feature of this bacteria's strategy is the manipulation of Mφ actin. Here, we examined the role of microRNAs (miRNAs) as a potential mechanism in the regulation of actin-mediated events leading to phagocytosis in the context of mycobacteria infection. Given that non-virulent Mycobacterium smegmatis also controls actin filament assembly to prolong its intracellular survival inside host cells, we performed a global transcriptomic analysis to assess the modulation of miRNAs upon M. smegmatis infection of the murine Mφ cell line, J774A.1. This approach identified miR-142-3p as a key candidate to be involved in the regulation of actin dynamics required in phagocytosis. We unequivocally demonstrate that miR-142-3p targets N-Wasp, an actin-binding protein required during microbial challenge. A gain-of-function approach for miR-142-3p revealed a down-regulation of N-Wasp expression accompanied by a decrease of mycobacteria intake, while a loss-of-function approach yielded the reciprocal increase of the phagocytosis process. Equally important, we show Mtb induces the early expression of miR-142-3p and partially down-regulates N-Wasp protein levels in both the murine J774A.1 cell line and primary human Mφs. As proof of principle, the partial siRNA-mediated knock down of N-Wasp resulted in a decrease of Mtb intake by human Mφs, reflected in lower levels of colony-forming units (CFU) counts over time. We therefore propose the modulation of miRNAs as a novel strategy in mycobacterial infection to control factors involved in actin filament assembly and other early events of phagolysosome biogenesis.
منابع مشابه
microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements
MicroRNAs (miRNAs, micro ribonucleic acids) are pivotal post-transcriptional regulators of gene expression. These endogenous small non-coding RNAs play significant roles in tumorigenesis and tumor progression. miR-142-3p expression is dysregulated in several breast cancer subtypes. We aimed at investigating the role of miR-142-3p in breast cancer cell invasiveness. Supported by transcriptomic A...
متن کاملDown-regulation of miR-193b-3p and miR-376a-3p in Chronic Lymphocytic Leukemia
Background: Chronic lymphocytic leukemia (CLL) is the most common adult human leukemia. Studies revealed that microRNAs (miRNAs) can function as oncogenes or tumor suppressors in CLL and that the expression of miRNAs, such as miR-193b-3p and miR-376a-3p change in several diseases. We aimed to elucidate the changes in miR-193b-3p and miR-376a-3p expression in CLL and determine their potential as...
متن کاملPhagocytosis in Myeloid Inflammatory Cells miR-24, miR-30b, and miR-142-3p Regulate
Micro-RNAs (miRNAs) are small noncoding RNAs that regulate various biological pathways. As their role in phagocytosis remains poorly understood, we investigated their impact on phagocytosis in myeloid inflammatory cells. Seven miRNAs (miR-24,-30b,-101, 142-3p,-652-3p,-652-5p, and-1275) that were differentially expressed during monocyte to macrophage (Mw) and monocyte to dendritic cell (DC) diff...
متن کاملmiR‑142‑3p promotes osteoblast differentiation by modulating Wnt signaling.
Canonical Wnt signaling is critical for the control of osteoblast differentiation in human mesenchymal stem cells. MicroRNAs (miRs) are essential regulators of cell differentiation by post‑transcriptional regulation of target gene expression. The aim of the present study was to investigate the molecular mechanism by which miR‑142‑3p promotes osteoblastic differentiation using the human fetal os...
متن کاملRole of miR-142-3p in the Post-Transcriptional Regulation of the Clock Gene Bmal1 in the Mouse SCN
MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional modulators by regulating stability or translation of target mRNAs. Recent studies have implicated miRNAs in the regulation of mammalian circadian rhythms. To explore the role of miRNAs in the post-transcriptional modulation of core clock genes in the master circadian pacemaker, we examined miR-142-3p for evidence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013